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Abstract

Collaboration in synthetic systems can inform our understanding of collaboration as 
a natural phenomenon. A general overview of how collaboration has been studied in 
the human evolutionary behavioral sciences is presented, and it is argued that further 
synthesis is needed across the diff erent levels of explanation. At present, two main 
issues prevent such a synthesis: (a) the current gap between proximate accounts of col-
laboration from the cognitive sciences and the ultimate levels of explanation from the 
evolutionary sciences, and (b) methodological limitations which inhibit joint study of 
collaboration at diff erent levels of description. Synthetic collaborative systems (e.g., 
 robotics and artifi cial intelligence) can help to address these issues. A unifi ed research 
program centered on synthetic collaboration provides a way to expand understanding 
of human and animal collaboration, to design and study human–machine collaboration, 
as well as to investigate purely synthetic forms of collaboration between intelligent 
machines. Here, current research is reviewed that employs synthetic methodologies 
across diff erent fi elds, the implications of developing synthetic collaborative agents are 
discussed, and an approach is proposed to study both natural and synthetic collabora-
tion, under the name of collaborative  cybernetics.

Science requires an almost complete openness to all ideas. On the other hand, it 
requires the most rigorous and uncompromising skepticism. —Carl Sagan  (1995)

Introduction: The Dusk Colony

Imagine the following: The fi rst human colony on another planet, named after 
its main private sponsor,  Dusk, was constructed over a seven-year period on 
our neighboring planet, Mars. The green tips of the pyramid-shaped buildings 
can be clearly seen from the planet’s surface, proudly rising from the ground, 
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like a set of icebergs fl oating in a sea of red sand and rocks. Underground, a 
complex system of interconnected caves has been carved out to protect the 
earthling society from the hostile environment above, with its high levels of 
ionizing radiation and extreme range in surface temperature. Autonomous 
3D printed and 3D printing factories process the extracted materials from a 
nearby mining station to produce concrete from sand and rock for industrial-
scale terraforming. The main engine of the spaceship that brought the settlers 
to Mars has been repurposed as the central power plant to provide energy to 
core infrastructures and to kick-start the production of solar cells. Through 
these eff orts, the surface of the red planet is slowly turning green. Greenhouses 
stretch for miles, fi lled with a combination of terrestrial fl ora in hydroponic 
plantations enhanced with artifi cial photosynthesis systems that sequester 
carbon dioxide from the atmosphere and produce oxygen. Additionally, a 
novel prototype plant transforms briny water from the surface into water 
and oxygen to feed the greenhouses. A large water extraction system takes 
advantage of a nearby deposit of frozen water below the surface. Experiments 
with genetically precision-engineered organisms have added mobility and 
nervous systems to plants, allowing them to adjust to extreme conditions. 
Thanks to these innovations and thousands of human-years of work, the 
fi rst extraterrestrial city is emerging to provide shelter to the exponentially 
growing population. Through these eff orts, Mars is becoming a springboard 
for the further population of the solar system and beyond, eff ectively mak-
ing humanity a space-bearing, multi-planetary species. As in all cities, Dusk 
provides shelter, protection from radiation and extreme temperatures, energy, 
oxygen, water, and food to a self-sustaining and rapidly growing population. 
The colony has everything, except for one thing: humans.

The Dusk colony has been built by and is entirely comprised of robots—
robots capable of maintaining themselves under extreme conditions, auto-
organizing, effi  ciently distributing work among themselves to accomplish the 
larger goals of building and maintaining the Mars colony and preparing colo-
nization missions to the next extraterrestrial footholds for the descendants of 
human civilization: the moons of Saturn and Jupiter, Titan and Europa, respec-
tively. Dependence on centralized terrestrial control, be it human or artifi cial 
intelligence (AI), is not an option for various reasons: the radio transmission 
delays between so-called Spacecraft Event Time and Earth Received Time 
(i.e., between four and 24 minutes), the lack of operator situational aware-
ness in teleoperation, and the chaos that would ensue when thousands of hu-
man and synthetic teleoperators try to coordinate their intentions and actions. 
Autonomous operation at both the individual and collective level is thus a nec-
essary condition for Dusk. Indeed, being so far away from human oversight, in 
the deep vastness of space, no one can fi x a  blue screen of death. Therefore, the 
robots that engage in space exploration need to be both robust (to withstand the 
harsh conditions of the Mars environment) and autonomous (to control their 
individual and collective actions). Above all, if they are to succeed in realizing 
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their common goal of colonizing Mars and beyond, they must achieve unprec-
edented levels of collaboration.

The colonization of space may lay within the adjacent possible, but what 
is required to make it an actuality? Before addressing the future of space ex-
ploration and colonization, humans must fi rst channel the collaborative eff orts 
of our entire species and its technologies to solve the most pressing issue of 
our time, or any time: the human-driven ecological collapse of Earth.  To real-
ize synthetic collaboration necessary for space colonization and to answer the 
acute threats caused by human’s tendency toward  self-destruction, we must 
fi rst understand the nature of collaboration as displayed by biological systems, 
such as social insects, mammals, and especially Homo sapiens. To this end, we 
propose that our understanding of collaboration can be greatly enhanced by 
constructing synthetic collaborative systems, such as those of the imaginary 
Mars settlement Dusk. Indeed, synthesizing and understanding collaboration 
are codependent and interlinked endeavors: the development of synthetic col-
laborative agents will both shape and amplify human collaboration and play a 
key role in understanding the nature of natural collaboration and its underlying 
principles, following the factum et verum principle of Giambattista Vico: We 
can understand that which we can build (Verschure 2012).

The Many Faces of Collaboration

This Ernst Strüngmann Forum was driven by basic questions: What is col-
laboration? What is it good for? Why do we collaborate? As a starting point, 
collaboration was understood as “cooperation between agents toward mutually 
constructed goals” (Roepstorff  and Verschure, pers. comm.). Accordingly, we 
must understand the constituent concepts: cooperation, agents, and goals.

More than 150 years after The Origin of Species (Darwin 1909), unraveling 
the mysteries of cooperation remains one of the most challenging aspects of 
animal behavior. Indeed, Darwin considered  cooperation as a puzzle to his the-
ory of  natural selection. When natural selection favors the evolution of behav-
iors that improve an individual’s fi tness or reproductive success, cooperation 
generally implies that the recipient of the cooperative action would improve its 
fi tness at the cost of the donor. This relationship contradicts the general reduc-
tionist premise behind natural selection (Apicella and Silk 2019).

Natural cooperation can be studied at diff erent levels of description: from 
the biophysical and neuronal (as happens in  bonding through the hormone 
oxytocin and the switching of circuits in the hypothalamus), to the emotional 
recognition of social cues, the cognitive processes of  theory of mind (ToM) 
and social decision making, up to the population dynamics of  collective be-
havior and the shaping forces of the physical, social, and cultural environ-
ment. To address these diff erent aspects, cooperation is studied in multiple 
disciplines: in the natural and social sciences, in engineering, as well as in the 
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fi eld of artifi cial intelligence. This multidisciplinary, partially reductionist, and 
fragmented decomposition of the phenomenon automatically generates a new 
challenge; namely, how can insights from these diff erent fi elds be integrated 
into one comprehensive perspective? We hold the realization of synthetic col-
laboration can be a fruitful method to push forward this epistemic integration 
 (Prescott et al. 2018).

The View from Biology

Any biological phenomenon must be viewed through the lens of evolution, 
as Dobzhansky (2013) famously recommended. Yet, what is cooperation ex-
actly? Following Mayr (1961) and Tinbergen (1963), the quest to explain any 
behavior can be divided into (a) the proximate causes of its ontogeny and the 
immediate mechanical specifi cation of a trait and (b) the ultimate causes of the 
phylogeny and function of such a trait. The latter provides the evolutionary 
explanation for the former in a unidirectional causal pathway. This perspec-
tive is a distinguishing feature of the so-called Modern Synthesis in evolu-
tionary biology, which integrated natural selection, population genetics, and 
Mendelian inheritance. Eff ectively, this created a tension with the Aristotelian 
material, formal, and fi nal causes, which had fallen in disrepute through the 
rise of physics in the nineteenth century and the associated reductionist dream 
of unifi ed science driven by unidirectional feedforward causality. Currently, 
Modern Synthesis is facing challenges that dislodge it further from these re-
ductionist roots toward a multiscale systems perspective based on bidirectional 
and recurrent causal interaction. These challenges result from new insights in 
the dynamics of evolutionary processes, including

• the tight coupling between development and evolvability in epigenetics 
(or evo-devo), where phenotypic change is seen to result from envi-
ronmental perturbations engaging with developmental programs rather 
than feedforward genetic mutations,

• inclusive inheritance through parental shaping of developmental re-
sources, from metabolism and behavior to the selection of hosts and 
environments, and

•  niche construction, where organisms change their environment to the 
extent that it, in turn, aff ects selection, thus leading to ecological inheri-
tance (for a review, see Laland et al. 2015).

As a result, an “ extended evolutionary synthesis” has emerged to question the 
unidirectional causal relationship between ultimate and proximate causes solely 
driven by selection upon gene variants. We argue that cooperation and collabo-
ration add yet another and possibly more profound challenge to the Modern 
Synthesis by not only emphasizing the multiscale dynamics of the organism 
and its niche but adding the further amplifi cation derived from the dynamics of 
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collectives of collaborating agents with access to internal and external symbolic 
memory and transfer. Collaboration establishes new causal pathways for niche 
construction,  adaptation, and selection (see also Chapters 12 and 16, this vol-
ume).  Here, we elaborate on the specifi c proposal that due to the critical role of 
multiscale feedback loops in processes of collaboration, new methods must be 
devised to understand, study, and explain collaboration that are complementary 
to current quantitative and qualitative approaches. The construction of synthetic 
collaborative systems provides an eff ective approach to bridge the gaps in our 
understanding because they allow, potentially, for a more precise experimental 
control of the many feedback loops and spatiotemporal scales involved. The 
construction of the  Dusk colony would thus not only be an engineering feat, 
but also a step toward advancing a fundamental understanding of ourselves as 
a profoundly collaborative species.

Several evolutionary mechanisms have been proposed to explain the emer-
gence of  cooperation (Nowak 2006). Kin-based  altruism explains cooperation 
between genetically related members of a species through the introduction 
of the construct of inclusive fi tness, where fi tness is understood as a measure 
of reproductive success (Hamilton 1964). In this view, the cost of assisting 
kin in terms of foregone reproduction can be off set and compensated if it 
is benefi cial to genetically related members. This means that genetic relat-
edness provides a necessary condition for this form of cooperation. Direct 
reciprocity, or reciprocal  altruism, extends the reach of cooperation beyond 
kin (Axelrod and Hamilton 1981; Trivers 1971). In a context where repeated 
interactions with the same individual might occur, reinforcement (including 
the possibility for  punishment) allows cooperative strategies to be maintained 
over time even with nonrelatives. Such reinforcement-based mechanisms 
follow the classic  Law of Eff ect advanced by Thorndike (1927): behavior 
is shaped through its outcomes or reinforcement, which has been shown to 
hold only for a very limited set of adaptive behavior.  Indirect reciprocity, 
with the addition of virtual reinforcers such as reputation and signaling, al-
lowed for these reciprocal mechanisms to extend the reach of cooperation 
beyond that of directly known individuals of a group and explain its potential 
scaling. This has been well illustrated through the analysis of small primate 
communities, such as  bonobos and  chimpanzees (de Waal 1989; de Waal 
and Lodge Jr. 1973).

Unfortunately, despite its success in explaining these key forms of coop-
eration, an evolutionary gene-centric view does not seem suffi  cient to account 
for the breadth of human cooperation. The emergence of  social norms and 
institutions in human societies poses a challenge to this paradigm, as neither 
kin-based altruism nor direct reciprocity can alone explain such unprecedented 
levels of cooperation (Boyd and Richerson 1985). By focusing on genes and 
natural selection, the modern evolutionary synthesis left other types of evolu-
tionary processes out of the equation.
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Research from  cultural evolution studies on human cooperation and behav-
ioral diversity further contributes to the  extended evolutionary synthesis, an 
example of multigenerational behavioral feedback and niche construction. The 
Interdependence Hypothesis states that the unique forms of human  coopera-
tion and cognition arose in two steps (Tomasello et al. 2012). In a fi rst step, 
ecological forces pressured early humans to become collaborative foragers. 
By virtue of this constraint, we became interdependent: it was in an individ-
ual’s best interest to care about the  well-being of dependent others, since it 
was a necessary condition for achieving mutual goals serving  survival (e.g., 
foraging, hunting, or defending the group). Achieving such collaborative in-
teractions required the refi nement of new cognitive  capabilities, such as  joint 
 intentionality and mind-reading, to facilitate the  alignment of individuals in a 
 bottom-up fashion to form a  collective. In addition, a new type of top-down 
factor came into play that enhanced the coherence in collective processes in 
the shape of a second-person normativity or joint  morality derived from the co-
operative process itself (Tomasello and Vaish 2013). In a second step, groups 
of hominids had to compete with other groups and species for space and re-
sources. This between-group  competition extended the functional interdepen-
dence from small coalitions to large collectives, which required a new form 
of collective intentionality or   group-mindedness. The hypothesis is that this 
transition from agent-dependent cooperation to group-level and agent-neutral 
collaboration formed the foundations of social conventions, norms, and insti-
tutions. It is believed that this transition played a critical role in the ability of 
H. sapiens to overcome other hominids, in particular H. erectus. Over time, 
competition between larger groups of hominids that held diff erent norms and 
institutions led to a cultural evolutionary selection process in which the groups 
with more cooperative norms managed to outcompete their rivals. In brief, 
this between-group competition led to within-group cooperation in large-scale 
societies. From this perspective, cultural change is itself regarded as an evo-
lutionary process, in which cultural traits are formed and spread according to 
their utility, attractiveness, and compatibility with existing traits and diversify 
through a cumulative process of invention, selection, elaboration, and refi ne-
ment (Brown et al. 2011). In this process, we can observe a transition from 
 mentalizing at the level of agents and their interactions, to collectives built by 
agents, to abstract institutions. Hence, at the heart of this complex form of col-
laboration stands the shaping of intentions, their representation by agents, and 
their externalization and formalization. This implies that collaboration plays 
out in the models that agents and collectives maintain of their physical and 
social environment, their tasks, and each other, rather than just in the physical-
ity of existence and interaction itself. We refer to this ability as the capability 
for  virtualization.

Despite its progress toward further integration, every synthesis leaves some-
thing behind. The extended evolutionary synthesis is no exception: the broader 
cognitive sciences, and the study of the proximate cognitive mechanisms that 
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give rise to cumulative cultural evolution have been omitted. Indeed, the char-
acteristic ratcheting process of cumulative cultural evolution relies critically 
on a set of cognitive mechanisms including  memory, consciousness, language, 
metacognition,  ToM, social perception, selective social learning,  teaching, 
and norm psychology, to name but a few (Birch and Heyes 2021). Further 
advances, therefore, should focus on taking such cognitive processes into ac-
count. In this new integrative view,  evolution by natural selection could be 
seen as a more general process of variation, selection, and heredity unfolding 
in multiple dimensions: genetic, epigenetic, behavioral, and symbolic (Deacon 
2011; Jablonka and Lamb 2006; Thierry 2007).  In the study of the feedback 
loops between these four dimensions that link the proximate and the ultimate 
causes and consequences of collaboration, the use of synthetic collaborative 
agents will be extremely important because they will allow for the control 
of time and a third-person analysis of fi rst-person states (Verschure 2016b). 
Hence, we observe a paradoxical transition in the biological perspective on 
evolution and collaboration, where the initial objective reductionist ambition 
heralding a new science of life has led us down a path where the subjective 
states of the agents that form collaborative groups must become central in-
gredients of the explanation. In other words, by moving the explanation of 
evolution from the directly observable physical world to the only indirectly ac-
cessible social world of collaboration, the dominant paradigm of evolution in-
cluded in its extended form has become incomplete (Deacon 2011). Precisely 
because of the  inclusion of “the other” and the necessary  virtualizations un-
derlying collaboration, we propose that synthetic methods will be key as they 
allow third-person access to fi rst-person states of thinking and experiencing 
synthetic agents (Verschure 2016b). 

The Relevance of a Synthetic Approach

To fi ll the epistemic gap in our understanding of collaboration, further steps 
need to be taken. We propose that the study of synthetic collaboration can help 
bridge the gap between the multiple levels of organization that underpin col-
laboration. By building artifi cial agents that can collaborate with us as well as 
among themselves, based on biological principles of control and communica-
tion, we will deepen our knowledge of collaboration and lay the groundwork 
for a new class of collaborative technologies that may help us achieve the 
colonization of Dusk on Mars and beyond.

The philosophical roots of the synthetic approach proposed here date back 
to the factum et verum principle of Giambattista Vico (1999). For Vico, cre-
ation was a form of understanding. Thus, building synthetic collaborative 
agents can bring several benefi ts as well as create new challenges (Lallee et al. 
2015; Verschure 2016b). First, it will help us build better models of human and 
animal collaboration. Building something from scratch will help us identify 
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the missing gaps in knowledge, focus on the underlying principles, and impose 
real-world constraints upon our developing theories, opening them up for em-
pirical  proof-of-concept validation. Second, it gives us unique access to the in-
ner workings of a system, such as the  memory states that provide the substrate 
for virtualization as deployed in  mental time travel and  mentalizing. This will 
permit us to investigate a behaving adaptive system from a privileged vantage 
point, as we will have direct access to the activity of its cognitive system and 
its full behavioral and experiential history. It will also enable the researcher to 
identify direct connections between environment, embodiment, cognition, and 
behavior. Third, the development of synthetic agents opens a new branch in 
the study of collaboration itself: that of artifi cial systems in machine–machine, 
machine–human, and machine–animal forms. This will allow us to explore 
new scenarios beyond the constraints of biological systems, such as memory 
capacity, communication bandwidth, or perceptual processing. By focusing on 
fully synthetic systems, we can move beyond biological plausibility in terms of 
physical and computational capabilities. Fourth, traditional empirical noncom-
putational methods struggle to study collaboration simultaneously at diff erent 
levels of description. Studies that focus on tracking brain activity during social 
interaction in controlled environments (e.g., Hamilton 2021; Li et al. 2021; 
Yang et al. 2020) are usually conducted between dyads or very small groups 
of participants to assure controllability.  Extending the study of such proximate 
levels to larger populations, while balancing the trade-off  between experimen-
tal control and ecological validity, is feasible but not a trivial task given our 
current technology. 

The Paths Created by Synthetic Collaboration

In addition to the arguments above, a synthetic approach to study collaboration 
off ers additional advantages. It would, for instance, create several new con-
crete research avenues and permit the theoretical aspects of collaboration to be 
more eff ectively studied, as discussed below. 

Embodiment, Aff ordances, and the Morphospace of Collaboration

Within the cognitive sciences, embodied  cognition theories emphasize the ac-
tive role of the physical body in shaping cognition (Clark 1999; Wilson 2002; 
Shapiro 2010). From this perspective, an agent’s cognition is (at least partially) 
shaped and determined by its body as well as its interactions with the environ-
ment. This consideration can be applied to any type of cognitive agent, biologi-
cal or synthetic. This means that the properties of an agent’s physical structure 
determine what information it can perceive and which actions it can perform 
(i.e., its perceptual and motor systems). Body specifi cations also determine 
what is required for its proper maintenance. These physical and physiologi-
cal constraints, in turn, shape the agent’s motivational and cognitive systems: 

From “The Nature and Dynamics of Collaboration,” 
 edited by Paul F. M. J. Verschure et al. Strüngmann Forum Reports, vol. 33,  

Julia R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 9780262548144



 Synthetic Collaborative Systems 77

how it thinks as well as what it can do.  Borrowing from embodied cognition 
theories, the notion of aff ordances in human–robot interaction studies refers 
to action possibilities that the environment provides to an agent (Moratz and 
Tenbrink 2008). In short, what an agent can do at any given moment is fully de-
termined by the limits and possibilities of the agent’s body and the ecological 
constraints of the environment in which it’s embedded. For instance, an agent 
endowed with a tool that extends its reach can grab objects further away than 
it would normally be able to do.

Combining these two notions, collaboration can be thought of as a way for 
each agent to extend its aff ordance space beyond the limitations of its cur-
rent capacities. In other words, collaboration allows agents to achieve goals 
beyond the reach of a single individual. This holds true even for collaboration 
between organisms of the same species who share similar aff ordances due to 
their comparable body confi guration.  This point becomes even more relevant 
when we think of how collaboration between agents with diff erent body com-
positions and confi gurations could capitalize on the particular skills and ca-
pacities of each individual agent. Human–robot collaboration falls within this 
category. Examples of this can be seen in search and rescue missions in which 
humans and drones collaborate and benefi t from each other’s capabilities. 
Beyond what agents with diff erent bodies can achieve by working together, 
there are other possible collaboration regimes that entail cognitive collabo-
ration. Collaboration between agents with diff erent knowledge sources can 
render benefi ts greater than the sum of their individual capacities. In  future 
research on synthetic collaboration, this needs to be explored, given its impli-
cations for the design and development of multi-robot activities (e.g., the Dusk 
colony); that is, situations where diff erent types of synthetic agents endowed 
with diverse morphologies and skills need to interact together.

Indeed, purely novel synthetic forms of collaboration can be developed due 
to the interaction of agents that did not previously exist in the natural world. 
In biology, the concept of a  morphospace defi nes a graphical representation of 
all the morphologies an organism could or does have; each point represents an 
individual shape (Arsiwalla et al. 2017; Ollé-Vila et al. 2016). The develop-
ment of novel forms of embodied artifi cial intelligence, made of completely 
diff erent materials to biological organisms, may give rise to agents that can 
perform physical and cognitive tasks in unique ways. The development of syn-
thetic agents—from robots that can carry heavy loads to AIs that can compute 
complex algorithms in fractions of a second—opens the possibility of extend-
ing the morphospace of collaboration. 

The Creation of a Synthetic Umwelt

The nineteenth-century philosopher Jakob Von Uexküll coined the term  Umwelt 
to refer to the perceptual world in which an agent exists and acts as a subject 
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(Von Uexküll 1992). It also refers to the semiotic world, as it includes the 
meaningful aspects of the world for any particular agent. In contrast to the no-
tion of Umwelt, the term Umgebung describes what the  Umwelt is as viewed 
by an observer. If the Umwelt is the agent’s fi rst-person, bodily constrained, 
subjective experience of the world, the Umgebung is the third-person descrip-
tion of such an experience. In the study of biological systems, there has always 
been an insurmountable barrier between these two concepts. By developing ar-
tifi cial agents, endowed with a specifi c set of sensors and actuators, we would 
de facto be engineering an Umwelt. However, unlike their biological counter-
parts, we would have complete access to the integrated fi rst-person perspective 
of the synthetic agents. In other words, we would dismantle an epistemological 
barrier that has not yet been breached, thus creating a possibility to study the 
relationship between an agent’s body, its environment, and the fi rst-person ex-
perience of both.

In summary, the materials and body plan of a synthetic agent determine 
its needs, capacities, and fi rst-person experience of the world. This, in turn, 
aff ects the space for possible collaborative acts that the agent will be willing 
and capable of performing. Fully understanding the relationship between the 
agent’s body, cognition, and Umwelt is of paramount importance for designing 
the type of collaborative agents with which we want to share the world. 

Multilevel Collaboration and Open-Endedness

The use of synthetic methods can enable a proper multilevel study of collabora-
tion. If we had direct access to real-time information from cognitive, behavioral, 
population, and ecological levels, our analysis could go beyond simple correla-
tions and begin to focus on causation between levels. Moving in this direction, 
novel methodologies have been developed to study downward and bottom-up 
causation between diff erent levels of description (Hoel 2018; Klein and Hoel 
2020; Rosas et al. 2020), thus allowing us to determine more accurately what 
level of description is more informative for the study of a target phenomenon 
and to better classify the emergent phenomena (Varley and Hoel 2022).

This opens the possibility of studying how certain environmental dynamics 
causally aff ect the behavior and cognition of diff erent species. For instance, 
we can investigate under which ecological conditions certain behaviors are 
expressed and gain a deeper understanding of what drives behavioral con-
vergence across species (Barsbai et al. 2021). In the same direction,  future 
research could study how diff erent cognitive mechanisms may give rise to 
similar collaborative behaviors (Raihani 2021). It would be extremely useful 
to understand how diff erent cognitive paths can reach the same behavioral 
destination if we aim to introduce synthetic collaborative agents into our 
daily lives.

A third aspect of the multilevel study of collaboration relates to the study 
of open-ended evolution and  adaptation. The bidirectional feedback loops 
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between diff erent levels of description have been proposed to be one of the 
driving forces of open-ended evolution in biological systems (Birch and Heyes 
2021; Dunbar 2003; Muthukrishna et al. 2018). In-depth studies of this process 
would be possible using synthetic agents. Moreover, such studies could help 
us to understand whether the same process takes place in the development of 
synthetic agents per se, so that we could extract more general and underlying 
computational principles. Studying the generative process that gives rise to 
the never-ending novelty of forms, intelligence, and behaviors seen in nature 
might also open the door to understanding the open-ended nature of human–
machine collaboration. 

 Synthetic Collaboration: The Present 

A Fragmented and Diverse Landscape

Extended evolutionary synthesis is advancing rapidly, and new results driv-
ing the fi eld forward hold the potential of establishing a true Kuhnian para-
digm shift (Kuhn 1970). In contrast, the study and development of synthetic 
collaborative agents is more fragmented, simplifi ed, and devoid of a unifying 
research framework.

 Agent-based modeling approaches focus on studying population-level 
dynamics through simulations of large numbers of relatively simple agents. 
Rooted in the artifi cial life movement from the late 1980s, this type of model-
ing work centers on how population-level eff ects emerge or  self-organize from 
interactions between simple agents (Baronchelli 2018). Agent-based modeling 
techniques have been widely used in

• traditional (Axelrod 2006) and evolutionary (Smith and Price 1973) 
game theory to study cooperative and competitive dynamics (Adami et 
al. 2016; Kaviari et al. 2019),

• cultural evolution studies (Richerson and Boyd 2004) to explain the 
formation of  social norms and conventions (Migliano and Vinicius 
2022; Richerson and Henrich 2009) as well as selective social learning 
(Lewis and Laland 2012; Migliano and Vinicius 2022; Richerson and 
Henrich 2009; Thompson et al. 2022),

• behavioral ecology to study collective behavior overall (Couzin et al. 
2002; DeAngelis and Diaz 2019), and

• linguistics to study the emergence of communication (Steels 2001, 
2016; Tseng and Son Nguyen 2020).

Traditionally, the type of agents used deploy minimal cognitive capabilities, 
as they follow simple rules for behavior and learning or direct heuristics. For 
instance, agent-based models of  cultural evolution are used to study biases 
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in social learning and cultural transmission, such as similarity bias (Saunders 
2022) or conforming to majority bias (Youngblood 2019).

In contrast, research on social cognition in artifi cial agents focuses on the 
complexities of local  dyadic interactions, using more elaborate models to rep-
resent the agent’s social cognition. This type of modeling centers on the un-
raveling of the most proximate mechanistic causes of social behavior. Notably, 
such models are developed in computational neuroscience to study the neural 
and computational basis of social cognition (Chang et al. 2021; Cushman and 
Gershman 2019) and decision making (Hutcherson et al. 2015; Olsson et al. 
2020) as well as in  social robotics to study and develop socially competent 
artifi cial agents and its eff ects on its interaction with humans (Hiatt et al. 2017; 
Johal et al. 2015; Lallee et al. 2015; Sarathy et al. 2016). These models pri-
oritize biological plausibility over population-level eff ects and which compu-
tational mechanisms, operating under such constraints, can give rise to social 
cognitive capacities such as social learning,  ToM, norm psychology, and even 
 moral decision making (Freire et al. 2020b).

These two approaches show a stark contrast in the use of artifi cial agents 
for studying the cognitive mechanisms behind multi-agent and dyadic col-
laboration: one uses minimal cognitive agents in big numbers, whereas the 
other uses complex cognitive models in small numbers (Hawkins et al. 2019a). 
This roughly refl ects the transition from the Modern Synthesis to the  extended 
evolutionary synthesis described earlier. Both views come from a long and 
successful tradition of studies and focus on the level of description suitable 
for the phenomena being studied. However, a truly synthetic approach that 
integrates both levels is still missing. Such a multilevel approach is needed to 
study top-down and bottom-up interactions among cognitive mechanisms that 
underpin collaboration, local  dyadic interactions, and population-level eff ects. 
Within the fi eld of artifi cial intelligence, emerging research on cooperative AI 
is beginning to tackle this problem (Dafoe et al. 2021) yet with strong roots in 
traditional agent-based models. 

Collaboration in Artifi cial Intelligence

The emerging multidisciplinary fi eld of cooperative  AI aims to develop al-
gorithms that can display  cooperation with an emphasis on contemporary AI 
methods, such as deep learning (Dafoe et al. 2021). This includes creating 
artifi cial agents capable of handling cooperative situations, building tools to 
foster cooperation in populations of agents, and otherwise conducting AI re-
search into problems of cooperation and social AI. The fi eld integrates several 
research lines and topics within AI captured in the capabilities of social cog-
nition, communication, moral action, and decision making, and building on 
multi-agent systems, classical game theory, and machine ToM. 
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Multi-Agent Reinforcement Learning

Advanced forms  of cooperation require experience-dependent adaptation of 
behavior and, as a result, popular methods of machine learning are applied to 
this area. Although the line of research on multi-agent reinforcement learning 
(RL) is relatively young, its research output is rapidly growing as, in the study 
of the emergence of confl ict and cooperation in agent populations (for extensive 
reviews, see Busoniu et al. 2008; Gronauer and Diepold 2022; OroojlooyJadid 
and Hajinezhad 2019). Recently, benchmarks inspired by game theory are be-
coming standard in the multi-agent RL literature (Freire et al. 2020a; Leibo et 
al. 2017; Lerer and Peysakhovich 2017; Rabinowitz et al. 2018). Building on 
this trend, some researchers are translocating the type of confl icts represented 
in classic game-theoretic tasks (e.g., the iterated prisoners dilemma) into more 
ecologically valid versions (Lillicrap et al. 2019). One particularly active line 
of research focuses on extending the Deep Q-Learning network architecture, 
proposed in Mnih et al. (2015), into the social domain (Leibo et al. 2017; Lerer 
and Peysakhovich 2017; Perolat et al. 2017). This  architecture combines an RL 
algorithm that labels states of the (social) world in terms of the most rewarding 
actions with which they are associated. These states are abstract features ex-
tracted from raw image pixels by a deep convolutional neural network. Given 
the decisive role of  virtualization in collaboration, such approaches will face 
limitations. They will, however, be able to delineate an upper bound of  coop-
eration driven purely by surface features that can be picked up by visual sen-
sors, such as position in space, proximity, and posture.  For instance, agents that 
build on this  model-free approach—where the agent learns by direct matching 
of sensory states to actions without resorting to an internal model—are already 
capable of learning how to play a two-player video game, such as Pong, from 
raw pixel data and have achieved human-level performance (Mnih et al. 2015) 
both in cooperative and competitive modes (Tampuu et al. 2017). Comparable 
approaches have produced agent models that achieve good outcomes in game-
theoretical tasks, including general-sum games and complex social dilemmas, 
by emphasizing cooperation (Lerer and Peysakhovich 2017) and  prosociality 
that takes into account the other’s rewards (Peysakhovich and Lerer 2017b), 
or by conditioning behavior based solely on  reciprocity (i.e., cooperating only 
with opponents that reciprocate cooperation) (Peysakhovich and Lerer 2017a).

Other recent studies have begun to address the emergence of  social norms 
and conventions in multi-agent scenarios (Freire et al. 2020a; Köster et al. 
2020). Notably, agents endowed only with  model-free RL algorithms were 
able collectively to follow conventions. Such model-free RL agents do not rely 
on a model of the task to support reasoning and planning, they learn habits by 
trial and error. The fact that they can converge toward a common convention 
might imply that some conventions can be supported by habitual cognition 
instead of deliberate model-based planning.
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The above examples ignore one fundamental constraint faced by embodied 
agents: sensory states must be derived from one’s own sensors from an ego-
centric perspective (Prescott et al. 2018). The majority of agents in the studies 
mentioned above gather their sensory data from a third-person perspective. 
They are trained using raw pixel data taken from a computer screen, which can 
be either completely (Lerer and Peysakhovich 2017; Peysakhovich and Lerer 
2017b; Tampuu et al. 2017) or partially observable (Leibo et al. 2017; Perolat 
et al. 2017). Another limitation present in most of the current research in coop-
erative AI and multi-agent RL is that they rely on grid-like or discrete environ-
ments (Lanctot et al. 2017; Leibo et al. 2017; Perolat et al. 2017; Peysakhovich 
and Lerer 2017a, b). Although this is an improvement over many classical 
matrix-form games, insofar as it provides a spatial and temporal dimension 
(i.e., approximate situatedness), it still lacks the  continuous time properties 
of real-world interactions. Even in the few cases where the coordination task 
is modeled in real time (Tampuu et al. 2017) and the agents are situated, the 
aforementioned approaches do not consider lower-level sensorimotor control 
loops bootstrapping learning at higher levels of a cognitive  architecture and the 
integration of model-free and model-based in unifi ed cognitive architectures. 
Hence, the generalization of collaborative AI models to real-world tasks and 
agents remains to be established.

In addition, most of the work developed in this fi eld pursues algorithmic 
specialists or models that are tested in one single task or environment (Freire 
et al. 2018; Lillicrap et al. 2019; Perolat et al. 2017; Peysakhovich and Lerer 
2017b). This raises a fundamental question about how these models generalize 
to a more generic or diverse set of problems. At this point, this approach does 
not readily enable us to extract principles and mechanisms or to unravel the 
dynamics that underlie human collaboration and convention formation (Freire 
et al. 2020a; Verschure et al. 2014). 

Agents Modeling Other Agents

The discussion above on biological cooperation highlighted the notion of  vir-
tualization and  mentalizing. A collaborating agent requires a model of other 
agents, or  ToM, with which it can potentially collaborate to align goals, task 
models, intentions, and actions. Within cooperative AI studies, notable ap-
proaches modeling various aspects of ToM already exist, particularly, those 
based on artifi cial neural networks (Schmidhuber 2015) and machine ToM 
(Rabinowitz et al. 2018). These approaches, however, are built on black-box 
optimization (BBO) algorithms, which hinders our understanding of these 
models at the mechanistic level. Although BBO algorithms can approximate 
any complex function, one cannot use them to decipher specifi c mechanisms 
and information structures that may underlie ToM in these systems. Therefore, 
once an objective function or reward heuristic has been set, it is diffi  cult to dif-
ferentiate the overfi tting of  sensorimotor couplings that solve the task from a 

From “The Nature and Dynamics of Collaboration,” 
 edited by Paul F. M. J. Verschure et al. Strüngmann Forum Reports, vol. 33,  

Julia R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 9780262548144



 Synthetic Collaborative Systems 83

functional ToM that might apply to any social scenario. This creates a paradox: 
to interpret the mental states of the other, the observant AI agent must rely on 
an uninterpretable algorithm. This problem is intrinsic to connectionism and 
was noted in the analysis of its reincarnation in the 1980s (Massaro 1990). 
Currently, it is the heart of the so-called interpretability crisis in AI and the 
drive toward “explainable AI” (for a review see Doshi-Velez and Kim 2017; 
Guidotti et al. 2018). Indeed, for this reason, cognitive neuroscience has con-
verged toward dual-process theories of ToM, which rely on an active inter-
preter (Gazzaniga 2016; Kahneman 2012).

Another approach toward ToM builds on hierarchical Bayesian inference, 
which capitalizes on the clustering of social cues (Baker et al. 2011). These 
methods are cognitively inspired and assume the existence of a prior “psychol-
ogy engine” in cognitive agents to process ToM computations (i.e., all knowl-
edge that facilitates ToM is provided a priori while the learning system learns 
to estimate their statistical relationships). Nevertheless, the remaining chal-
lenge for this approach is to explain where these priors come from and how the 
brute force computations required to run these models might be realized in bio-
logical substrates of real-world embodied and situated agents. In other words, 
this approach is reminiscent of the problems faced by “good old-fashioned” 
symbolic AI, where operational effi  ciency collapsed under the weight of the 
predefi ned world model and the cost of updating its truth values (McCarthy 
and Hayes 1981) combined with the biological and psychological implausibil-
ity of the prior availability of complete world models, or the problem of priors 
(Verschure and Althaus 2003). Hence, this approach can at best inform us on 
the  manipulation of knowledge in the service of  cooperation while its scaling 
to the real-world is questionable. 

Open Challenges and Current Limitations of Cooperative AI

Contemporary research in cooperative AI is beginning to integrate more so-
phisticated machine learning models with the study of population-level dy-
namics. It mostly follows, however, a technological AI-oriented agenda that 
focuses on computer engineering problems rather than understanding human 
or animal collaboration and its underlying cognitive mechanisms. As such, co-
operative AI is not directly concerned with the biological plausibility of its 
models or with providing explanations for collaboration as it occurs in the 
real world (Freire et al. 2019). Instead, most contemporary research focuses 
on challenges such as multi-agent planning, multi-objective optimization, and 
policy convergence and related issues with strong roots in traditional game 
theory and models from economics, which assume the optimal  H. economicus. 
Moreover, in many cases, the focus is on validating algorithmic specialists—
virtual agents that make use of one single learning algorithm to solve one spe-
cifi c benchmark (Fujimoto and Pedersen 2021).
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Open challenges in the fi eld of cooperative multi-agent systems include 
modeling fully embodied agents that operate within only partially observable 
environments and are able to learn fl exibly across tasks (including meta-learn-
ing) when interacting with multiple types of other agents. For an extensive 
review on the open challenges of cooperative AI, see Dafoe et al. (2021). We 
note that these challenges have been relevant for the whole of AI since its in-
ception in the 1950s, which refl ects negatively both on overall progress and the 
time constants of memory in the fi eld. Indeed, Allen Newell, one of the found-
ing fathers of AI, defi ned general intelligence as the ability to make anything 
a task, while considering social interaction as one of the key benchmarks for 
theories of cognition (for a review, see Verschure 2023). 

From Algorithmic Specialists to Embodied Cognitive Architectures

To understand  and emulate biological generalists, we have to shift focus away 
from algorithmic specialists toward theories and models that can help us un-
derstand how diff erent mechanisms of perception, cognition, learning, and 
control are integrated into one cognitive  architecture. This step is challeng-
ing and thus far barely explored, yet essential for progress both in terms of 
generating artifi cial collaboration as well as in advancing our understanding 
of biological forms of it in the context of the  extended evolutionary synthesis.

From the perspective of the cognitive architecture that underpins social 
interaction and collaboration, a ten-year research eff ort in  social robotics, 
supported by the European Commission, is addressing this challenge in the 
following coupled projects:

• Experimental Functional Android Assistant (EFAA 2023)
• Expressive Agents for Symbiotic Education and Learning (EASEL 

2023)
• What You Say Is What You Did (WYSIWYD 2023)
• Distributed Adaptive Control (CDAC 2023)

These research eff orts advance  a general-purpose cognitive architecture for hu-
manoid robots (DACh) that can be deployed in a range of  dyadic collaborative 
tasks, such as the acquisition of language or  teaching. It is also able to engage 
in a range of collaborative scenarios (Fischer et al. 2018; Lallee et al. 2015). 
Below, we provide a short summary of the development of DACh to elucidate 
some key lessons with respect to the understanding, shaping, and creation of 
collaboration. 

The Distributed Adaptive Control Perspective

  Distributed Adaptive Control (DAC) is a theory of the design principles that 
underlie the mind, brain, body nexus (MBBN). It seeks to explain goal-ori-
ented action in physical and social environments and shows how action can 
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result from a control architecture that is organized in four layers—the somatic 
(the body), reactive, adaptive, and contextual (Figure 5.1)—with tight cou-
pling within and between each layer (Verschure 2012; Verschure et al. 2014). 
Across these control layers, a columnar organization exists which, at every 
level of the hierarchy, processes states of the world, the self, and action, where 
the latter mediates between the former two through the environment. As we 
move up the DAC hierarchy, states on which operations are performed be-
come more virtualized from the analog signals picked up by the senses serving 
fl exibility in perception,  memory, and cognition. In contrast, lower layers are 
based on priors that allow for rapid yet rigid responses. Thus, the architec-
ture dynamically balances these layers to resolve distinct trade-off s, such as 
speed and robustness (i.e., reactive control), versus fl exibility in problem solv-
ing (contextual control). DAC is a theory of brain organization and has been 
applied to the realization of synthetic collaboration between machines (i.e., 
humanoid robots) and humans.

The reactive layer can be seen as a model of the evolutionary ancient core 
behavior systems (CBS) of the brainstem (Merker 2005), which drives be-
havior and learning based on genetic priors. The adaptive layer facilitates the 
learning of the perception and action state space, allowing adaptation to an 
unpredictable world. The contextual layer builds on these acquired represen-
tations (virtualizations), aff ording the construction of goal-oriented policies 
and their subsequent compression into habits. The contextual layer serves 
further  virtualization through self-monitoring and autobiographical memory 
(i.e., metacognition, building abstract models of the self, “the other,” and the 
tasks in which it fi nds itself). To realize this cognitive bootstrapping, DAC in-
cludes several learning and memory systems. The adaptive layer is defi ned as 
a model of Pavlovian learning, which is constrained by reinforcers detected by 
the reactive layer. In this way, the adaptive layer acquires states of the world, 
semantic memory, their association with the agent’s actions, and is further ex-
panded through integrative episodic memory. The contextual layer operates on 
these memory systems (e.g., allocentric maps, and individual items and events 
stored in semantic memory) to build action policies by constructing sequential 
representations predicated on goals and  values. These policies are retained in 
long-term memory and operated on in working memory. At every operating 
cycle, the contextual layer deliberates on which action to emit, by optimizing 
the expected utility of active policies weighted against the relevance of new 
perceptual and memory states. Eff ective policies from this model-based pro-
cess are compressed into model-free habits and stored in procedural memory 
to settle the speed-fl exibility trade-off .

Biologically grounded cognitive architectures, such as DAC, specify the 
basic processes that underlie intelligent behavior by including the specifi c pro-
cesses of arbitration, representational formats, and  confl ict resolution that go 
beyond the implementation of a learning algorithm. A distinguishing feature of 
the DAC architecture is that each layer of the control system is an integral part 
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Figure 5.1 A highly abstract representation of the Distributed Adaptive Control 
(DAC) cognitive architecture showing its main processes (boxes) and dominant in-
formation fl ows (arrows). DAC is organized in four layers (bottom to top): somatic, 
reactive, adaptive, contextual. Across these layers, three functional columns of orga-
nization are distinguished (left to right): exteroception, the sensation, representation, 
and modeling of the external world (red); interoception, detecting and signaling states 
derived from the embodied self, from needs and drives to values and goals (blue); and 
action, which establishes the interface between self and the world (green). The arrows 
show the primary fl ow of information, mapping exo- and endo-sensing into action, 
defi ning a continuous interaction loop with the external world. Image adapted from Ver-
schure et al. (2014) (Creative Commons Attribution License http://creativecommons.
org/licenses/by/4.0/).
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of a larger system. In contrast with standard RL approaches, which focus on the 
application of just one learning algorithm, the DAC architecture emphasizes 
integration and complementarity across components. DAC’s perspective em-
phasizes that humans are more than simple  stimulus-response automata driven 
by Thorndike’s  Law of Eff ect (Thorndike 1927), instantiated by the reactive 
and adaptive layers. Rather, behavior is  goal-directed and the outcome of the 
adaptive and volitional human mind/brain interacting with its environment. 
We argue that the application of biologically informed cognitive architectures 
such as DAC to the study of collaboration both addresses the limitations of 
the current  multi-agent RL perspective and articulates the key challenges in 
understanding and synthesizing collaboration.

In the development of an embodied social cognitive architecture, the min-
imal unit is the dyad of two agents. Understanding this primitive unit will 
help us to identify the necessary conditions for collaboration. Collaboration 
depends on the  alignment of the goals of the agents involved. Hence, one of the 
fi rst challenges to generate eff ective and aligned actions in a dyad is to estimate 
the mental state of “the other.” This raises the question of what the reference 
is for this interpretation. The standard contemporary AI approach would be to 
train a network on many prelabeled examples of surface features, such as pos-
ture, facial expression, or prosody and their associated mental states. This ap-
proach has only shown limited success converging on simple shortcuts rather 
than ToM (Aru et al. 2023).

An alternative route toward  ToM is provided by the phenomenology of 
Edmund Husserl, Martin Heidegger, and Maurice Merleau-Ponty and its mod-
ern incarnation in the embodied cognition movement. DAC has built on the 
so-called apperception or “other like self” model of Merleau-Ponty, taking 
into account that “self” is a multiscale notion from the physically instanti-
ated ecological self to the constructed narrative  self (Neisser and Fivush 1994) 
matching the multiple layers of the DAC architecture. Hence, this embodied 
cognition perspective on ToM proposes that it is grounded in the sub-architec-
ture of the perceptual, emotional, cognitive, and motor substrates that defi ne 
and represent the self. Direct evidence of this hypothesis was found through 
the discovery of the so-called mirror neurons by Giacomo Rizzolatti and his 
colleagues in the early 1990s. Several decades of subsequent research have 
produced strong evidence that information of the other is broadly mapped onto 
brain networks that encode states of the self, including areas involved in per-
ception, emotion, cognition, and motor control in a range of mammalian spe-
cies (for a review, see Bonini et al. 2022).

With “self” as the frame of reference for the representation of the other, the 
question is: What ontological commitments does the observer need to make 
to track the states of other agents? The neurophysiology of “other like self” 
shows that ToM results from multimodal internal models rather than discrete 
and fragmented representations. DAC proposes that the model underlying 
ToM can be defi ned in a six-dimensional conceptual space, known as  H5W, 
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comprised of action (how),  motivation (why), objects (what), space (where), 
time (when), and agents (who) (Lallee et al. 2015). We can consider the DAC 
H5W framework as a minimal situation model in which collaboration can be 
described, communicated, and modulated. It needs to be emphasized that H5W 
proposes three priors within which experience is constructed: space, time, and 
intention (Verschure 2016b). Having established an ontological frame in which 
social interaction and collaboration can be modeled (or virtualized) by an agent 
following the “other like self” and  H5W model, the question is: How is col-
laboration initiated, bootstrapped, and maintained? This requires at least three 
additional ingredients:

1. The machine must be recognizable to its peers as a potential social 
entity and thus collaborator.

2. It must proactively engage with its peers to create and contribute to 
collaboration.

3. It must be able to optimize  alignment of goals and actions through 
communication.

In  a series of experiments, these aspects were addressed using dyadic   hu-
man–robot interaction (HRI) paradigms, building on the humanoid robot iCub 
(Metta et al. 2010). In a fi rst set of experiments, gaze, eye contact, and the 
expression of basic emotions (e.g., happiness, sadness, disgust, anger, fear, 
and surprise) were demonstrated to play an essential role in the psychological 
validity or social salience of HRI (Lallee et al. 2015).

Given that an agent can be recognized as a potential collaborator, the ques-
tion becomes: How can the actual collaboration be initiated, maintained, and 
bootstrapped? DACh assumes that at the level of the most primitive reactive 
layer (i.e., the CBS), one of the  intrinsic motivations is to act and interact with 
social peers. This is based on the notion of “play” as a fundamental behav-
ioral drive, advanced by Panksepp et al. (1984), and the notion of the “human 
interaction engine,” advanced by Levinson (2006). This social CBS includes 
 capabilities for shared attention, pointing,  curiosity,  reciprocity, turn-taking, 
and  knowledge sharing (Moulin-Frier et al. 2018). As a result of the cogni-
tive bootstrapping in DACh, the agent can acquire goal-oriented behavioral 
policies that now also pertain to social interactions and collaborative tasks. To 
ensure alignment in the collaboration, the DACh agent must verbally report on 
its behavioral policies and experiences stored in its autobiographical memory, 
which defi nes DACh’s narrative self. The  memory systems of DACh allow 
it to project future actions and reactions, when future states of the world are 
expected to resemble those encountered in the past. In various HRI scenarios, 
DACh was validated: the robot had to learn concepts related to its own body, 
its environment, and other agents in a proactive manner and to express those 
concepts in the structuring of collaborative goal-oriented behavior. To achieve 
this, DACh had (a) to balance its epistemic needs of learning about the task and 
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the other, using and expressing its knowledge, and (b) to maintain the coher-
ence and continuity of the interaction.

An intrinsic problem of DACh is credit assignment in  multi-agent sce-
narios. If all external agents are mapped onto internal predictive models that 
mediate between perception and (social) action, how can these models be fur-
ther calibrated given the feedback DACh receives? For instance, agents might 
not behave as expected, inconsistencies in alignment may occur, and specifi c 
social norms and conventions need to be considered. The DAC theory pro-
poses that this calibration is the specifi c function of consciousness; that is, the 
unifi cation of parallel  virtualization processes into one super model that al-
lows compression of parallel models into a unifi ed scene, its valuation, and the 
adjustment of the underlying models. In this respect, DAC hypothesizes that 
functional primitives underlying collaboration, including proto-consciousness, 
emerged during the Cambrian explosion 560 million years ago (Verschure 
2016b). Although we cannot second guess evolution, collaboration is a highly 
conserved feature of biological systems and not a recent invention. Indeed, the 
earliest genetic changes that gave rise to eusocial animals are at least 110 mil-
lion years old (Nowak et al. 2010). 

Bringing It All Together 

A Challenge That Requires Unifi cation

As seen in the brief review of synthetic collaboration in the previous section, 
current synthetic approaches to studying collaboration are less integrated be-
tween themselves than the empirical work on the natural sciences. Although 
signifi cant progress has been made on each front in parallel, it has happened 
mostly in isolation, without signifi cant interaction between fi elds. Building 
truly autonomous synthetic communities of embodied artifi cial intelligent 
agents will require the integration of insights coming from the  extended evo-
lutionary synthesis,  agent-based modeling, computational neuroscience, co-
operative AI, and  social robotics.  We believe that one of the most promising 
research avenues in the multilevel study of collaboration will come precisely 
from the combination of complex cognitive architectures at the individual level 
(such as DACh), with complex multi-agent environments at the population 
level (like the ones currently studied in collaborative AI).

In addition, the extended evolutionary synthesis and its perspective on com-
plex phenomena, such as collaboration, need to incorporate synthetic methods. 
These methods, as exemplifi ed in the DACh architecture, enable artifi cial sys-
tems to render intrinsically inaccessible fi rst-person states (e.g., the content of 
memory, ToM, and goals) into third-person accessible constructs.
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Back to Dusk

Although it still lives in the realm of science fi ction, a challenge of the scale and 
ambition of the construction of the  Dusk colony could drive the fi eld forward 
because it necessitates an intense and concrete interaction between empirical, 
theoretical, engineering, and computational approaches. The construction of 
such a colony will require the development of a truly autonomous robot society 
that is able to self-organize to achieve such a goal without direct human supervi-
sion. Achieving this goal implies a lot of trial and error as well as a great deal 
of imagination. To be prepared for long-term  survival, such a synthetic com-
munity should be able to recycle the materials of its malfunctioning members 
and build completely new ones when required. Such “newborn” machines could 
go through a process of morphological and cognitive development similar to 
biological systems. Such a developmental process cannot be understood with-
out reference to the social environment in which the agent is embedded. This 
developmental approach to AI, already advanced by Alan Turing (1950), should 
be combined with the learning of cultural practices of the community through 
a process of social interaction and scaff olding as proposed by Lev Vygotsky 
(1978). This Turing–Vygotskian socio-developmental model of the develop-
ment of communities of collaborative synthetic agents will also be useful to 
understand how the process of development and socialization interacts with the 
cognitive, behavioral, and ecological dimensions implicated in the study of col-
laboration. The DACh model described above could be considered a fi rst step in 
this direction.

An alternative approach would be, for instance, to rely on a robot extended 
mind or a “robot cloud.” Back to Dusk, we could imagine how every new 
robotic exemplar would automatically upload all its perceptual and cognitive 
protocols from a collective cognition database containing all knowledge the 
robot colony has generated through its existence. Several simulations of this 
strategy were tested before launching the fi nal mission to Mars. However, one 
reason why these Dusk simulations failed was that the robot cloud assumed 
that the future is fully predictable, and no cognitive scaff olding was required. 
Its crucial mistake: forgetting that other agents are the main source of unpre-
dictability in the world. Another simulation of Dusk failed due to a sort of 
value function hacking by a rogue group of robots. In this iteration, a group 
of robots that were in the workshops building and servicing worker robots, 
adjusted the value functions of the latter, resulting in more ore being mined 
than necessary. The ore surplus was then used by the “hacker” robots to ob-
tain services from other robot castes so as to reduce their own existential risk. 
Once this fi rst example of robot corruption was discovered, value function 
hacking was prevented by adding additional security protocols through rapid 
optimization. Unfortunately, this redesign was not suffi  ciently tested; mining 
operations, previously a task of humans, ground to a halt; the hacker robots 
turned to outright sabotage; and the colony collapsed before humans could 
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interfere. This failed simulation of Dusk became known as capitalization on 
the commons; that is, the real or imagined objects in the world that pertained 
to the value function of a group of collaborating agents was identifi ed and thus 
could be instrumentalized through a parasitic attack that drove up the cost of 
access to the commons. 

The Shape of Things to Come

The rise and fall of the  Dusk colony happens in a hypothetical future, yet sci-
ence fi ction stories, regardless of their futuristic envelopes, usually embody a 
warning about the present. That lesson not only involves refl ecting on what we 
can do today to avoid a disturbing future; it also involves realizing which ele-
ments of such a future are already here with us today, and critically refl ecting 
on what we can do about it. 

From Cybernetics to Cyberethics

The possibility of an  open-ended  process taking place in the development of in-
telligent artifi cial agents and their role within human societies can lead directly 
to concerns about predictability and control. Without predictability and control 
in the design of collaborative processes between humans and machines, we 
will enter the realm of the “unknown unknowns” of the  morphospace of col-
laboration, which clearly have worrying ethical implications due to unforeseen 
(and potentially catastrophic) consequences. As the fi ctional complex systems 
theorist Ian Malcom pointed out in the fi lm Jurassic Park, “scientists were 
so preoccupied with whether or not they could, that they did not stop to think 
whether they should.” Indeed, before we engineer and develop increasingly 
competent and intelligent artifi cial agents, like the protagonists of the Dusk 
colony, we should fi rst address the study of the ethics of machines.

Eff orts in this direction are currently taking place within the fi eld of AI 
ethics—a multidisciplinary fi eld that tries to address the current ethical issues 
regarding the growing impact that artifi cial intelligence and robotics have in 
our society (Coeckelbergh 2020). The fi eld addresses how to implement  moral 
decision making in artifi cial agents as well as the ethical consequences of in-
troducing artifi cial agents in human environments and how to manage issues 
that arise. Examples of this line of research cover issues such as the study of al-
gorithmic biases (Kordzadeh and Ghasemaghaei 2022), algorithmic transpar-
ency (Brauneis and Goodman 2018), and algorithmic accountability (Kemper 
and Kolkman 2019; Wieringa 2020).

An even more novel research framework has recently been proposed under 
the name of computational ethics (Awad et al. 2022), which aims to bridge a 
gap on the AI ethics research program by incorporating insights from cognitive 
science. In short, computational ethics specifi es how the ethical challenges of 
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AI can be partially addressed by incorporating the study of human moral deci-
sion making. The perspective followed by the computational ethics framework 
is very much aligned with the synthetic spirit of this chapter: it attempts to 
unify both empirical and computational approaches under one single research 
program. More concretely, it proposes to formalize our current understanding 
of human ethics computationally so it can be applied to the development of ma-
chine ethics. Interestingly, the study of the underlying computational principles 
governing behavior in humans and machines has its roots in the fi eld of cyber-
netics. In honor of such a research tradition, we think that a more fi tting name to 
the study of computational ethics should be cybernethics or cyberethics.

 Collaborative Cybernetics: Toward a Multilevel Cybernetic 
Approach to the Study of Collaboration

In the eponymous book that gave birth to the fi eld, Norbert Wiener (1948) de-
fi nes  cybernetics as the study of control and communication in the animal and 
the machine. The word cybernetics comes from the Greek words κυβερνάω 
(kybernáō), which means “to steer, navigate, or govern,” κυβερνητική 
(kybernētikḗ), which means “governance,” and κυβερνήτης (kybernḗtēs), 
which refers to the governor or helmsperson of a ship. Since the notion of 
feedback or circular causality is central to the study of cybernetics, the name 
of this fi eld was coined based on an example of steering a ship. To reach its 
destination across the seas, a helmsperson needs to maintain a steady course 
by continuously adjusting the steering of the ship in response to the waves 
and changing winds. In a way, a collaborative task is like a ship in which each 
member must work together to steer it in the right direction. Thus, every col-
laborative eff ort requires more than one helmsperson.

In the spirit of this Forum, we advocate for synthesis across fi elds to help 
us better understand what collaboration means. The fi nal goal is to develop a 
cross-disciplinary, multilevel theoretical view of collaboration. This emergent 
fi eld should aim to bring together the study of collaboration in both biological 
and artifi cial agents, with the goal of extracting general rules to understand and 
develop collaborative multi-agent systems, both hybrid and unblended (i.e., 
human–human, human–machine, and machine–machine collaboration). We 
propose to name it “collaborative cybernetics”—the study of coupled, interde-
pendent, goal-oriented systems that share a common goal.

We believe that the defi nition and development of such a research program 
is more relevant than ever. As humanity has become more interconnected and 
globalized, human societies are more interdependent on each other. The con-
sequences of such  globalization feed back onto the environment, aff ecting not 
only our species but the totality of Earth’s ecosystems. In his famous speech to 
the United Nations in 1965, Adlai Stevenson said:
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We travel together, passengers on a little spaceship, dependent on its vulnerable 
reserves of air and soil; all committed for our safety to its  security and peace; 
preserved from annihilation only by the care, the work, and, I will say, the love 
we give our fragile craft. We cannot maintain it half fortunate, half miserable, 
half confi dent, half despairing, half slave—to the ancient enemies of man—half 
free in a liberation of resources undreamed of until this day. No craft, no crew 
can travel safely with such vast contradictions. On their resolution depends the 
 survival of us all.

Viewing our planet as a shared spaceship helps us understand how deeply 
linked our destinies are to that of our ship. Its correct maintenance and survival 
are responsibilities that each one of us must bear, as we are all helmspersons 
of Spaceship Earth. Unfortunately, an instruction manual did not come with it, 
as Buckminster Fuller once famously remarked. It is time to start making one, 
for if we want to steer the ship toward a safe destination, we must learn to steer 
it together.
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